Contents - Index


Other example(s)



1. Lightning induced voltage calculation

In this example a model for induced voltage calculations in overhead lines is presented. The example is taken from [1, 2]. The basic assumptions are:
The overhead line can be treated as loss-less. 
The electrical field is assumed to propagate unaffected by the ground.
The Agrawal coupling model is used. 
The transmission line (TL) model is used for the lightning channel, assuming a pure step current at ground. The actual current shape at ground is taken into account by a final convolution integral of the induced voltages. This assumption is believed to be valid the first few microseconds where oftens the maximum induced voltage occurs.
The electrical field from the lightning leader is constant, and the resulting induced voltage is zero.
The same inducing voltage is assumed in all phases, but this could easily be extended since the inducing voltage is proportional to the line height, z.

The circuit shown in Fig. 1 shows the equivalent circuit of and overhead line excited inducing fields from a lightning channel. It can be connected to any component in the ATP, and several line segments are allowed.

Fig. 1. Equivalent circuit of 2-phase overhead line, excited by nearby lightning. Modeled in ATPDraw.


Below, an example of the electric circuit part of the two-phase model in Fig. 1 is listed in ATP file format.

/BRANCH
51X1    P1                  300.            
52X2    N1                  200.             500.
51P2    X3                  300.            
52N2    X4                  200.             500.
/SOURCE
60X1
60X2
60X3
60X4

A further simplification of this model is to rewrite it into a type94 Norton-transmission component.

References

[1] H.K. Høidalen, Lightning induced voltages in low-voltage systems, PhD thesis, ISBN 82-471-0177-1, University of Trondheim 1997. 
[2] H.K. Høidalen, "Calculation of Lightning-induced Overvoltages using MODELS ", Proc. int. conf on Power Syst. Transients IPST'99, June 20-24, Budapest.


MODEL INDUS2
CONST 
  Tmax {­VAL:500}    --number of time steps      
  Im   {­VAL:30.e3}  --current amplitude      
  T1   {­VAL:2.e-6}  --front time constant      
  T2   {­L:50.e-6} --decay time constant      
  m    {­VAL:5}      --slope factor      
  c    {­VAL:3.e8}   --speed of light      
  v    {­VAL:1.1e8}  --lightning velocity      
  Io   {­VAL:1}      --step current ampl.      
  z    {­VAL:6}      --line height
INPUT UAP,UBP,UAN,UBN    --terminal voltages
DATA Y,XA,XB             --orientation parameters
OUTPUT 
  UrAP,UrBP,UrAN,UrBN    --to type 60 sources
VAR 
  UindA[0..1000],UindB[0..1000],dI[0..1000],
  Tr,Ti,I,e,dt,UrAP,UrBP,UrAN,UrBN,
  ta,tb,b,n,L,x,Ko,Ui,Tj
FUNCTION 
  SQR(x):=x*x
FUNCTION 
  F(x,tr):= (x+b*b*(c*tr-x))/sqrt(sqr(r(v*tr)+(1-b*b)*(x*x+y*y))
FUNCTION 
  U0(x,tr):= 60*Io*z*b*(c*tr-x)/(y*y+sqr(b*(c*tr-x)))
HISTORY  
  UrAP {­t:0}, UrBP {­dflt:0}  
  UrAN {­dflt:0}, UrBN {­dflt:0}  
  UAP  {­dflt:0}, UBP  {­dflt:0}  
  UAN  {­flt:0}, UBN  {­dflt:0}
INIT  
  dt:= timestep
  b:=v/c
  L:=XA-XB
  FOR Tj:=1 TO 2 DO
    if Tj=1 then 
      x:=XA else 
      x:=-XB 
    endif
    ta:=sqrt(x*x+y*y)/c
    tb:=sqrt(sqr(x-L)+y*y)/c
    FOR Ti:=0 TO Tmax DO
      Tr:=Ti*dt    
      if Tr>ta
      then
        if Tr>tb+L/c 
        then
          Ui:=U0(x,Tr)*(f(x,Tr)-f(x-L,Tr-L/c)) 
        elselse
          Ui:=U0(x,Tr)*(f(x,Tr)+1)
        endif
      else
        Ui:=0
      endif
      if Tj=1 then 
        UindA[Ti]:=Ui else 
        UindB[Ti]:=Ui 
      endif
    ENDFOR
  ENDFOR 
  FOR Ti:=0 TO Tmax DO  --Heidler current:
    Tr:=Ti*dt
    IF (Ti=0) THEN dI[0]:=0
    ELSE
      e:=exp(-(T1/T2)*exp(ln(m*T2/T1)/m))
      I:=Im/e*exp(m*ln(Tr/T1))/
         (exp(m*ln(Tr/T1))+1)*exp(-Tr/T2)
      dI[Ti]:=I*((m/Tr)/
             (exp(m*ln(Tr/T1))+1)-1/T2)    
    ENDIF  
  ENDFOR--Convolution integral. Small Io required!!
  Ti:=Tmax
  WHILE Ti>1 DO    
    FOR Tr:=1 TO Ti-1 DO      
      UindA[Ti]:=UindA[Ti] + UindA[Tr]*dI[Ti-Tr]*dt
      UindB[Ti]:=UindB[Ti] + UindB[Tr]*dI[Ti-Tr]*dt    
    ENDFOR    
    Ti:=Ti-1  
  ENDWHILE--Possible to scale Uind 
  Tr:=L/c
ENDINIT
EXEC  
  UrAP:=UindA[t/dt]+2*delay(UBP,Tr-dt,1)-delay(UrBP,Tr,1)  
  UrAN:=UindA[t/dt]+2*delay(UBN,Tr-dt,1)-delay(UrBN,Tr,1)  
  UrBP:=UindB[t/dt]+2*delay(UAP,Tr-dt,1)-delay(UrAP,Tr,1)  
  UrBN:=UindB[t/dt]+ 2*delay(UAN,Tr-dt,1)-delay(UrAN,Tr,1)
ENDEXEC
ENDMODEL